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INTRODUCTION
Solar energy production is directly correlated to the 

amount of radiation received at a project location.  Like 
all weather-driven renewable resources, solar radia- 
tion varies rapidly over time and space and under- 
standing this variability is crucial in determining the 
financial viability of a solar energy project. 

The three components of irradiance most critical for 
determining solar installation production values are 
Global Horizontal Irradiance (GHI), Direct Normal Irra-
diance (DNI), and Diffuse Irradiance (DIF). Fixed panel 
photovoltaic (PV) installations are dependent on GHI, or 
the total amount of radiation received by a horizontal 
surface. Concentrated solar power (CSP) projects and 
PV tracking systems rely predominantly on DNI, which 
is the total amount of radiation received by a surface 
that is always kept perpendicular to the sun’s direct 
rays. Most financing options for solar projects require 
information on the expected yearly irradiance values 
as projects typically have to service debt one to four 
times a year. However, annual averages do not provide 
enough information to determine accurate annual 
exceedance probabilities for irradiance and power 
production. 

Depending on the characteristics of a site, studies 
have shown that on average, annual irradiance means 
can differ from the long-term mean by 5% for GHI and 
by as much as 20% for DNI. Thus a long-term record 
of solar irradiance estimates is needed to calculate a 
realistic variance of production values.

The existing network of surface observation stations 
is too sparse to quantify solar resources at most poten-
tial sites.  A vast majority of stations only provide a 
limited short-term record of the resource (months to a 
few years), are rarely located near proposed sites, and 
are often plagued with measurement errors. Calculat-
ing site-specific solar irradiance values using geosta-
tionary satellite data is an accepted alternative. Within 
the global atmospheric science community, satellite 
derived values have proven to be more accurate than 
nearby surface observations for locations that are 
more than 25 km away from a ground station. 3TIER 
created a global satellite derived solar dataset to help 
clients determine solar variability at any site world-
wide, from the prospecting stage through assessment 
and bankability.
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In this paper, we will provide an outline of standard 
practices that should be followed to ensure accurate 
solar assessment. We will also describe the methodol-
ogy 3TIER used to create its global solar dataset and 
provide an extensive validation, showing the accuracy of 
3TIER’s data by region in the Appendix.

SOLAR DEVELOPMENT ROADMAP
Developing a solar project requires a large upfront 

investment. A standard development roadmap con-
serves time and money and ensures that only the most 
promising projects are constructed. Each stage of 
development asks different questions about the solar 
resource and each stage requires varying degrees of 
information and investment. 

Prospecting and Planning

The first step in building any solar resource project is 
identifying the regions most suitable for development. 
The price of energy, access to transmission, and envi-
ronmental siting issues should all be taken into consid-
eration, but the most essential variable is the availability 
of the solar resource – the “fuel” of the project. At this 
early stage, average annual and monthly solar irradi-
ance values can be used to assess the overall feasibility 
of a particular site and to select the appropriate solar 
technology to be installed. Presently, basic solar annual 
and monthly averages can be found via online solar 
prospecting tools and in the form of GIS layers. These 
tools allow developers to quickly target the best loca-
tions for further investigation and identify red flags early 
in the process.

Design and Due Diligence

Once a promising site is identified, a more in-depth 
analysis is required to better quantify the long-term 
availability of the solar resource, to design technical 
aspects of the project, and to secure the upfront capital 
for construction. A common source of solar data used 
for this purpose is Typical Meteorological Year (or TMY) 
data. A TMY dataset provides a 1-year, hourly record of 
typical solar irradiance and meteorological values for 
a specific location in a simple file format. Although not 
designed to show extremes, TMY datasets are based on 
a long time period and show seasonal variability and 
typical climatic conditions at a site. They are often used 
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as an input to estimate average annual energy produc-
tion. While TMY data provide a good estimate of the 
average solar irradiance at a site, they are not a good 
indicator of conditions over the next year, or even the 
next 5 years. The U.S. National Renewable Energy Labo-
ratory User Manual for TMY3 data explicitly states, “TMY 
should not be used to predict weather for a particular 
period of time, nor are they an appropriate basis for 
evaluating real-time energy production or efficiencies 
for building design applications or a solar conversion 
system.” Hourly time series covering a period of several 
years provide a much more complete record for calcu-
lating accurate estimates of solar resource variability.

Year-to-year variability has a significant impact on 
annual energy production. Many financial and rating 
institutions, as well as internal certification organiza-
tions, require 1-year P90 values to assess the economic 
feasibility of a project. A 1-year P90 value indicates 
the production value that the annual solar resource 
will exceed 90% of the time. A 1-year P90 value (as 
opposed to a 10-year P90 value) is typically mandatory 
because most solar projects have a lending structure 
that requires them to service debt one to four times 
a year, not one to four times every 10 years.  If power 
production decreases significantly in a given year due 
to solar variability, debt on the project may not be able 
to be paid and the project could default on its loan. This 
is precisely what financiers are trying to avoid. The only 
way to determine 1-year P90 values acceptable to fund-
ing institutions is with long-term continuous data at the 
proposed site.

If collected properly, surface observations can pro-
vide very accurate measurements of solar radiation at 
high temporal resolution, but few developers want to 
wait the 5 to 10 years required to develop a 1-year P90 
value. Satellite derived irradiance values can accurately 
provide a long-term, hourly time series of data without 
the expense and wait. However, satellite data cannot 
always capture the micro-scale features that affect a 
site. Therefore, a combination of short-term ground 
measurements and long-term satellite derived irradi-
ance values is ideal for assessing variability and project 
risk. One method of combining short-term ground mea-
surements with long-term satellite data is a technique 
known as model output statistics (or MOS). 3TIER’s MOS 
algorithm can significantly reduce error and bias by sta-
tistically correcting our satellite derived irradiance



values to the environmental context of a particular site 
based on available surface observations. More infor-
mation on MOS can be found at:

http://www.3tier.com/en/support/glossary/#mos

Operations and Optimization

With more solar energy coming onto the grid every- 
day, effectively managing its integration is becoming 
increasingly important. Once a project is operational, 
forecasting plays a vital role in estimating hour and day 
ahead solar production and variability. This information 
is critical for estimating production, scheduling energy, 
managing a mixed energy portfolio, avoiding imbalance 
charges, and detecting reduced production days.

Some rudimentary NWP (Numerical Weather Predic- 
tion) modeling systems have been introduced for this 
purpose. However, 3TIER has found that basic NWP 
models poorly estimate cloud cover, the single variable 
that most directly impacts solar energy production.

To provide greater accuracy, 3TIER has developed a 
sophisticated method of combining our advanced NWP 
models with our long-term satellite derived dataset. 
Other factors that impact production, such as wind, 
temperature, and aerosols, can also be taken into 
account to better predict real-time solar production.

Recent solar irradiance observations can also be 
used to model the energy that a project should have 
produced. Comparing modeled production with actual 
production helps identify underperforming projects 
and explain to what extent solar variation is impacting 
production. This periodic, ongoing reconciliation helps 
pinpoint maintenance and equipment issues particu-
larly for those with a geographically dispersed portfolio 
of projects.

3TIER SOLAR METHODOLOGY
3TIER developed and maintains a global, long-term, 

high-resolution solar dataset, which was created 
using satellite observations from around the world. As 
discussed earlier in this document, satellite derived 
data have proven to be the most accurate method of 
estimating surface solar irradiance beyond 25 km 
of a ground station. 3TIER’s main source of satellite 
observations is weather satellites in a geo-stationary 
orbit. These satellites have the same orbital period as 

the Earth's rotation and, as a result, their instruments 
can make multiple observations of the same area with 
identical viewing geometry each hour.

3TIER uses visible satellite imagery to calculate the 
level of cloudiness at the Earth’s surface. The result-
ing time series of cloudiness (or cloud index) is then 
combined with other information to model the amount 
of solar radiation at the Earth’s surface. The outcome 
is a 15+ year dataset that provides hourly estimates 
of surface irradiance (GHI, DNI, and DIF) for all of the 
Earth’s land mass at a spatial resolution of approxi- 
mately 3 km.

The general methodology is similar to other satel-
lite derived solar datasets, but a majority of the algo-
rithms were developed in-house. 3TIER's dataset also 
includes several key improvements such as higher 
spatial and temporal resolution, empirical fitting, and 
a monthly time series of turbidity estimates. We have 
also developed a cloud-index algorithm that produces 
consistent results when used with the large number of 
different satellites that must be combined to construct 
a global dataset. In Figure 1, a basic flow chart pres-
ents our general methodology.

Satellite based time series of reflected sunlight are 
used to determine a cloud index time series for every 
land surface worldwide. A satellite based daily snow 
cover dataset is used to aid in distinguishing snow 
from clouds. In addition, the global horizontal clear- 
sky radiation (GHC), or the amount of radiation in the 
absence of clouds, is modeled based on the surface 
elevation of each location, the local time, and the  mea-
sure of turbidity in the atmosphere. This latter quantity 
accounts for the transparency of the atmosphere and 
is affected by aerosols and water vapor. Unfortunately, 
direct observations of turbidity are made at only a few 
locations. 3TIER opted to use a satellite based, monthly 
time series of aerosol optical depth and water vapor 
derived from four datasets available from the Moderate 
Resolution Imaging Spectroradiometer (MODIS). This 
dataset was combined with another turbidity dataset 
that includes both surface and satellite observations to 
provide turbidity measurements that span the period 
of our satellite dataset and are complete for all land 
surfaces.

The cloud index and GHC are then combined to 
model GHI. This component of the process is calibrated 
for each satellite based on a set of high-quality surface 
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observations. GHI estimates are then combined with 
other inputs to calculate DNI and DIF. 

Despite the resolution of the dataset, some factors 
need to be taken into consideration by the user. 3TIER’s 
global solar dataset does not directly account for local 
shades and shadows and, as a result, local conditions 
must be considered when interpreting the irradiance 
values. Also, in some areas with highly reflective ter-
rain, such as salt flats and areas with permanent snow, 
the satellite algorithms have difficulty distinguishing 
clouds from the terrain. The cloudiness estimates in 
these areas are higher than they should be and the 
amount of GHI and DNI is underestimated and the DIF 
is overestimated. Known areas affected by this problem 
include highly reflective areas such as Lake Gairdner 
National Park in South Australia.

VALIDATION OF 3TIER GLOBAL 
IRRADIANCE DATASET

An extensive validation of 3TIER’s satellite data was 
performed using observations from 120 surface sta-
tions across the globe. In the study, 3TIER used sta-
tions from the World Climate Research Program and 
the Baseline Surface Radiation Network, National 
programs from the Indian Metrological Department, 
the Australian Bureau of Meteorology, the National 
Solar Radiation Database, and several others obser-
vational datasets. For quality control any negative or 
anomalously high irradiance values were removed 
from the observations prior to the analysis. The World 
Climate Research Program estimates ground solar 
radiation sites have inaccuracies of 6-12%. Special-
ized high quality research sites, such as those from the 
Baseline Surface Radiation Network, are possibly more 
accurate by a factor of two. These constraints make 
direct comparisons between solar radiation datasets 
difficult, but it is still possible to estimate the relative 
accuracy if the same reference observations are used. 
The statistics presented in the following sections were 
computed using only daytime irradiance values, which 
provide a better indication of the accuracy and value of 
the dataset. 

Global Validation Statistics

Table 1 provides a list of statistical metrics evaluat-
ing 3TIER’s global dataset. There were 120 surface 

observations that had GHI measurements but only 96 
stations with quality DNI measurements. The statis-
tics are also shown in a global map including all the 
stations for GHI in Figures 2 and for DNI in Figure 3. 
The computed statistics include those most commonly 
used in the solar industry, such as mean bias error 
(MBE), mean absolute error (MAE), and hourly root 
mean square error (RMSE). Mean bias error (MBE) 
provides information about the average difference 
in the mean over the entire dataset when compared 
against observations. Mean absolute error  (MAE) 
measures the average magnitude of the errors. Root 
mean square error (RMSE) also measures the average 
magnitude of the error, but uses quadratic weighting, 
which results in large errors carrying more weight. 
A smaller RMSE value means that the dataset more 
closely tracks observations on an hour-by-hour basis. 
Together MBE, MAE, and hourly RMSE can be used to 
assess the accuracy of a solar dataset compared to 
observations.

Globally, 3TIER GHI values show a MBE and MAE 
of 0.9% and 3.8% respectively and an hourly RMSE of 
approximately 24.1% when compared with observa-
tions. These errors are consistent across each of the 
six regions. This means 3TIER irradiance values can 
be used across the globe with the same degree of 
certainty for each region despite the vastly different 
meteorological conditions. The DNI errors are slightly 
higher showing a MBE and MAE of 0.7% and 8.6% 
respectively and an hourly RMSE of 43.1%. The higher 
RMSE for DNI is to be expected considering the signifi-
cant hour-to-hour variability of DNI compared to GHI. It 
should be noted that all the mean errors are within the 
standard error of observations as determined by the 
World Climate Research Program.

  

Interannual Variability and P90 values

For design and due diligence, calculating yearly P90 
values is essential for project financing.  Using average 
or TMY irradiance data is not sufficient information to 
understand the variability that affects solar projects. 
An example of this is seen in the GHI measurements 
for Desert Rock, Nevada (36.63N, 116.02W) and illus-
trated in Figure 4. Over a 10 year period, ground obser-
vations showed annual GHI variations were generally 
less than 5% from the mean, with one anomalous year 
of low GHI in 2002 where GHI was about 6% less than 
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the long-term mean. 3TIER’s satellite derived solar 
dataset captures this interannual variability with an 
annual correlation coefficient of 0.97 and an overall 
mean bias error of 2.5%.

A 3TIER MOS-corrected time series was derived 
using 1 year of ground observations from Desert Rock 
from 2008 and the 3TIER satellite record at that loca-
tion. The MOS-corrected time series retained the high 
correlations with the observed data (annual correlation 
coefficient of 0.97) and also reduced bias from 2.5% 
to less than 0.5%. This MOS-corrected time series 
provides a long-term perspective using short-term 
observations and can be used  as a way to calculate the 
1-year P90 values. 

CONCLUSION
The development of solar projects has expanded 

significantly and appears to have a promising future.  
However, even the best locations are not immune to 
normal year-to-year variations in solar irradiance, 
which have a corresponding impact on power produc-
tion and the ability of the project to service its debt. 
While on-site observations capture the localized 
nuances of solar irradiance at a particular location, 
they do not provide the long-term perspective required 
for project funding. Satellite derived solar datasets, 
on the other hand, accurately capture year-to-year 
fluctuations, but do not always capture micro-scale 
features. A solar resource assessment, combining both 
on-site observations and long-term, satellite derived 
data greatly reduces uncertainty, and provides the 
“bankable” production estimates required to secure 
financing. Widespread adoption of this assessment 
technique will ensure that only profitable solar projects 
are constructed and secure the future success of the 
solar energy industry.
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Figure 1. A flow chart showing 3TIER's method for calculating solar irradiance at the 
Earth's surface.
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Figure 2. Global maps showing mean bias and RMSE for GHI.
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Figure 3. Global maps showing mean bias and RMSE for DNI.
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Table 1. Validation statistics 
globally and by the regions 
shown in Figure 3. MBE is 
Mean Bias Error, MAE is the 
mean absolute error, STDEV is 
the standard deviation of the 
errors. Median is the median 
of the error, Hourly RMSE is 
the Hourly Root Mean Square 
Error, and N is the number of 
stations used in the analysis.

GHI
MBE
MAE
STDEV
Median
Hourly RMSE
N

DNI
MBE
MAE
STDEV
Median
Hourly RMSE
N

Global

0.9%
3.8%
5.0%
0.6%

24.1%
120

0.7%
8.6%

11.6%
2.5%

43.1%
96

AME

-0.1%
4.2%
5.8%

-0.9%
15.4%

18

4.0%
11.9%
13.5%

5.8%
36.8%

16

ASA

1.1%
3.9%
5.4%
0.6%

26.6%
26

3.1%
6.7%
8.1%
3.0%

40.7%
20

S.AM

-1.1%
4.4%
5.2%
1.3%
21%

7

13.4%
13.4%

3.7%
15.4%
50.6%

3

N.AM

0.9%
3.8%
4.9%
1.0%

22.6%
44

-2.5%
8.7%

12.4%
-2.1%
43.1%

44

EUR

1.7%
2.7%
3.6%
0.7%

31.3%
22

1.0%
5.9%
7.4%

-0.3%
52.8%

13

IND

3.7%
4.5%
4.2%
3.1%

29.6%
3

NA
NA
NA
NA
NA
NA

Figure 4. Annual observed, 3TIER derived, 
and 3TIER MOS GHI values for a 10-year 
period (1999-2008) at Desert Rock, Nevada.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
220

225

230

235

240

245

250
Annual GHI− DR

 G
H

I W
/m

2)

 

 

Surface Observations
3TIER Derived
3TIER−MOS

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

−6

−4

−2

0

2

4

6

An
om

al
� 

fro
m

 M
ea

n 
�

�ears



Appendix: Regional Validations

East Asia/Oceania (ASA)

Statistics for the ASA region were 
derived using 13 sites in Australia, 4 
in New Zealand, 4 located on islands 
in the Pacific, 2 in Japan, 1 in Korea, 
1 in Taiwan, and 1 in China.  Mean 
bias and hourly RMSE values for 
each of these sites are displayed 
below and the numeric averages are 
shown in Table 1. On average, mean 
bias errors for GHI and DNI are less 
than 4%. There is a weak trend of 
under prediction of GHI over the inte-
rior of Australia and over prediction 
to the north. Hourly RMSE values for 
the ASA region are consistent with 
global validation statistics, averaging 
to 27% for GHI and 41% for DNI.
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 Africa/Middle East (AME)

For Africa and the Middle East 
region (AME), 18 observational sites 
were available for validation, 3 in 
Africa and 15 over the Middle East. 
For the 18 sites mean bias and 
hourly RMSE were consistent with 
validation statistics globally with 
mean bias errors of less than 1% 
for GHI and 4% for DNI as shown 
in Table 1. The hourly RMSE values 
for GHI and DNI are 15% and 37% 
respectively. 
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Europe (EUR)

Statistics for Europe (EUR) were 
derived using 22 sites across the 
area.  Mean bias and hourly RMSE 
values for each of these sites are 
displayed in the figure below and 
numeric averages are shown in 
Table 1. On average, mean bias 
errors for GHI and DNI are less than 
2%. Hourly RMSE for the Europe 
region are consistent with global 
validation statistics, averaging to 
23% for GHI and 53% for DNI. 
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South America (S.AM)

Statistics for South America (S.AM) 
were derived using 6 sites in Brazil 
and Chile.  Mean bias and hourly 
RMSE values for each of these sites 
are displayed in the figure below and 
numeric averages are shown in Table 
1. On average, mean bias errors for 
GHI were 3% with Hourly GHI RMSE 
of around 21%. The DNI errors were 
larger with a MBE of 13% for 3 sites. 
The observed data is of questionable 
quality, which may be contributing to 
the larger errors seen in this region. 
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North America (N.AM)

Statistics for North America 
(N.AM) were derived using 44 sites 
across the area.  Mean bias and 
hourly RMSE values for each of 
these sites are displayed in the fig-
ure below and numeric averages are 
shown in Table 1. On average, mean 
bias errors for GHI and DNI are less 
than 3%. Hourly RMSE values for 
the N.AM region are consistent with 
global validation statistics, averag-
ing to 23% for GHI and 43% for DNI. 
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India (IND)

For validation over India, the Indian 
Meteorological Department (IMD) 
provided observed climatological 
values of GHI and DIF for 3 stations 
throughout the subcontinent. Pres-
ently, accurate DNI measurements 
from the IMD were not available. For 
GHI mean bias errors were less than 
4%. These errors are consistent with 
the validation numbers across the 
globe for the 3TIER dataset.
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